This documentation is automatically generated by online-judge-tools/verification-helper
#include "Math/MFPrefixSum.hpp"
#pragma once
#include <math.h>
#include <cstdint>
#include <vector>
#include <stack>
#include "EnumeratePrimes.hpp"
template <class T>
struct MFPrefixSum {
int64_t n;
int64_t sqrtN;
std::vector<int32_t> primes;
int32_t sz;
int32_t prisz;
MFPrefixSum(uint64_t N) {
n = N;
sqrtN = sqrt(n);
sz = sqrtN * 2;
if (n / sqrtN == sqrtN) sz--;
while ((sqrtN + 1) * (sqrtN + 1) <= n) sqrtN++;
while (sqrtN * sqrtN > n) sqrtN--;
primes = enumerate_primes(sqrtN);
prisz = primes.size();
}
std::vector<T> pi_table() {
std::vector<T> dp(sz);
for (int32_t i = 0; i < sqrtN; i++) {
dp[i] = i;
}
for (int32_t i = sqrtN; i < sz; i++) {
dp[i] = n / (sz - i) - 1;
}
for (int64_t x : primes) {
for (int32_t i = sz - 1; i >= sqrtN; i--) {
if (n < x * x * (sz - i)) break;
if (sz - (sz - i) * x < sqrtN) {
dp[i] -= (dp[n / (x * (sz - i)) - 1] - dp[x - 2]);
} else {
dp[i] -= (dp[sz - (sz - i) * x] - dp[x - 2]);
}
}
for (int32_t i = sqrtN - 1; i >= 0; i--) {
if (i + 1 < x * x) break;
dp[i] -= (dp[(i + 1) / x - 1] - dp[x - 2]);
}
}
return dp;
}
std::vector<T> prime_sum_table() {
std::vector<T> dp(sz);
for (int32_t i = 0; i < sqrtN; i++) {
dp[i] = T(i + 1) * T(i + 2) / 2 - 1;
}
for (int32_t i = sqrtN; i < sz; i++) {
dp[i] = T(n / (sz - i)) * T(n / (sz - i) + 1) / 2 - 1;
}
for (int64_t x : primes) {
for (int32_t i = sz - 1; i >= sqrtN; i--) {
if (n < x * x * (sz - i)) break;
if (sz - (sz - i) * x < sqrtN) {
dp[i] -= (dp[n / (x * (sz - i)) - 1] - dp[x - 2]) * x;
} else {
dp[i] -= (dp[sz - (sz - i) * x] - dp[x - 2]) * x;
}
}
for (int32_t i = sqrtN - 1; i >= 0; i--) {
if (i + 1 < x * x) break;
dp[i] -= (dp[(i + 1) / x - 1] - dp[x - 2]) * x;
}
}
return dp;
}
std::vector<T> prefix_prime_table(auto f) {
std::vector<T> dp(sz);
for (int32_t i = 0; i < sqrtN; i++) {
dp[i] = f(i + 1);
}
for (int32_t i = sqrtN; i < sz; i++) {
dp[i] = f(n / (sz - i));
}
for (int64_t x : primes) {
for (int32_t i = sz - 1; i >= sqrtN; i--) {
if (n < x * x * (sz - i)) break;
if (sz - (sz - i) * x < sqrtN) {
dp[i] -= (dp[n / (x * (sz - i)) - 1] - dp[x - 2]) *
(f(x) - f(x - 1));
} else {
dp[i] -=
(dp[sz - (sz - i) * x] - dp[x - 2]) * (f(x) - f(x - 1));
}
}
for (int32_t i = sqrtN - 1; i >= 0; i--) {
if (i + 1 < x * x) break;
dp[i] -= (dp[(i + 1) / x - 1] - dp[x - 2]) * (f(x) - f(x - 1));
}
}
return dp;
}
struct _Node{
int64_t x;
int32_t gpf;
int32_t c;
int32_t cnt;
T fx;
T ret;
};
T black_algorithm(std::vector<T> &table, auto f) {
//x,gpf(x),c,f(x),cnt,ret
if(n==1)return 1;
std::stack<_Node> dfs;
dfs.push({1,-1,0,0,1,0});
while(true){
_Node *tp=&dfs.top();
if(tp->cnt==tp->gpf){
if(tp->x*primes[tp->gpf]*primes[tp->gpf]<=n){
dfs.push({tp->x*primes[tp->gpf],tp->gpf,tp->c+1,tp->cnt,tp->fx,0});
}
tp->ret+=tp->fx*f(primes[tp->gpf],tp->c+1);
tp->fx*=f(primes[tp->gpf],tp->c);
tp->cnt++;
}
else{
if(tp->cnt<prisz&&tp->x*primes[tp->cnt]*primes[tp->cnt]<=n){
dfs.push({tp->x*primes[tp->cnt],tp->cnt,1,tp->cnt,tp->fx,0});
tp->cnt++;
}
else{
if(tp->gpf==-1){
if(sz-tp->x<sqrtN)return tp->ret+tp->fx*table[n/tp->x-1]+1;
else return tp->ret+tp->fx*table[sz-tp->x]+1;
}
T nret=tp->ret;
if(sz-tp->x<sqrtN)nret+=tp->fx*(table[n/tp->x-1]-table[primes[tp->gpf]-1]);
else nret+=tp->fx*(table[sz-tp->x]-table[primes[tp->gpf]-1]);
dfs.pop();
if(dfs.empty())return nret+1;
dfs.top().ret+=nret;
}
}
}
}
std::vector<T> min25_sieve(std::vector<T> &table, auto f) {
std::vector<T> dp = table;
for (auto it = primes.rbegin(); it != primes.rend(); it++) {
int64_t x = *it;
for (int32_t i = sz - 1; i >= sqrtN; i--) {
if (n < x * x * (sz - i)) break;
int64_t xp = x;
int32_t c = 1;
while (xp * x * (sz - i) <= n) {
if (sz - (sz - i) * xp < sqrtN) {
dp[i] += f(x, c) * (dp[n / (xp * (sz - i)) - 1] -
table[x - 1]) +
f(x, c + 1);
} else {
dp[i] +=
f(x, c) * (dp[sz - (sz - i) * xp] - table[x - 1]) +
f(x, c + 1);
}
c++;
xp *= x;
}
}
for (int32_t i = sqrtN - 1; i >= 0; i--) {
if (i + 1 < x * x) break;
int64_t xp = x;
int32_t c = 1;
while (xp * x <= i + 1) {
dp[i] += f(x, c) * (dp[(i + 1) / xp - 1] - table[x - 1]) +
f(x, c + 1);
c++;
xp *= x;
}
}
}
for (int32_t i = 0; i < sz; i++) {
dp[i] += 1;
}
return dp;
}
};
#line 2 "Math/MFPrefixSum.hpp"
#include <math.h>
#include <cstdint>
#include <vector>
#include <stack>
#line 4 "Math/EnumeratePrimes.hpp"
std::vector<int32_t> enumerate_primes(int32_t n) {
std::vector<bool> flg((n + 1) >> 1, true);
std::vector<int32_t> ret = {2};
for (int32_t i = 3; i <= n; i += 2) {
if (!flg[i >> 1]) continue;
ret.emplace_back(i);
if (i * i > n) {
for (int32_t j = i + 2; j <= n; j += 2) {
if (flg[j >> 1]) ret.emplace_back(j);
}
break;
}
for (int32_t j = i * i; j <= n; j += i << 1) {
flg[j >> 1] = false;
}
}
while (!ret.empty() && ret.back() > n) ret.pop_back();
return ret;
}
#line 9 "Math/MFPrefixSum.hpp"
template <class T>
struct MFPrefixSum {
int64_t n;
int64_t sqrtN;
std::vector<int32_t> primes;
int32_t sz;
int32_t prisz;
MFPrefixSum(uint64_t N) {
n = N;
sqrtN = sqrt(n);
sz = sqrtN * 2;
if (n / sqrtN == sqrtN) sz--;
while ((sqrtN + 1) * (sqrtN + 1) <= n) sqrtN++;
while (sqrtN * sqrtN > n) sqrtN--;
primes = enumerate_primes(sqrtN);
prisz = primes.size();
}
std::vector<T> pi_table() {
std::vector<T> dp(sz);
for (int32_t i = 0; i < sqrtN; i++) {
dp[i] = i;
}
for (int32_t i = sqrtN; i < sz; i++) {
dp[i] = n / (sz - i) - 1;
}
for (int64_t x : primes) {
for (int32_t i = sz - 1; i >= sqrtN; i--) {
if (n < x * x * (sz - i)) break;
if (sz - (sz - i) * x < sqrtN) {
dp[i] -= (dp[n / (x * (sz - i)) - 1] - dp[x - 2]);
} else {
dp[i] -= (dp[sz - (sz - i) * x] - dp[x - 2]);
}
}
for (int32_t i = sqrtN - 1; i >= 0; i--) {
if (i + 1 < x * x) break;
dp[i] -= (dp[(i + 1) / x - 1] - dp[x - 2]);
}
}
return dp;
}
std::vector<T> prime_sum_table() {
std::vector<T> dp(sz);
for (int32_t i = 0; i < sqrtN; i++) {
dp[i] = T(i + 1) * T(i + 2) / 2 - 1;
}
for (int32_t i = sqrtN; i < sz; i++) {
dp[i] = T(n / (sz - i)) * T(n / (sz - i) + 1) / 2 - 1;
}
for (int64_t x : primes) {
for (int32_t i = sz - 1; i >= sqrtN; i--) {
if (n < x * x * (sz - i)) break;
if (sz - (sz - i) * x < sqrtN) {
dp[i] -= (dp[n / (x * (sz - i)) - 1] - dp[x - 2]) * x;
} else {
dp[i] -= (dp[sz - (sz - i) * x] - dp[x - 2]) * x;
}
}
for (int32_t i = sqrtN - 1; i >= 0; i--) {
if (i + 1 < x * x) break;
dp[i] -= (dp[(i + 1) / x - 1] - dp[x - 2]) * x;
}
}
return dp;
}
std::vector<T> prefix_prime_table(auto f) {
std::vector<T> dp(sz);
for (int32_t i = 0; i < sqrtN; i++) {
dp[i] = f(i + 1);
}
for (int32_t i = sqrtN; i < sz; i++) {
dp[i] = f(n / (sz - i));
}
for (int64_t x : primes) {
for (int32_t i = sz - 1; i >= sqrtN; i--) {
if (n < x * x * (sz - i)) break;
if (sz - (sz - i) * x < sqrtN) {
dp[i] -= (dp[n / (x * (sz - i)) - 1] - dp[x - 2]) *
(f(x) - f(x - 1));
} else {
dp[i] -=
(dp[sz - (sz - i) * x] - dp[x - 2]) * (f(x) - f(x - 1));
}
}
for (int32_t i = sqrtN - 1; i >= 0; i--) {
if (i + 1 < x * x) break;
dp[i] -= (dp[(i + 1) / x - 1] - dp[x - 2]) * (f(x) - f(x - 1));
}
}
return dp;
}
struct _Node{
int64_t x;
int32_t gpf;
int32_t c;
int32_t cnt;
T fx;
T ret;
};
T black_algorithm(std::vector<T> &table, auto f) {
//x,gpf(x),c,f(x),cnt,ret
if(n==1)return 1;
std::stack<_Node> dfs;
dfs.push({1,-1,0,0,1,0});
while(true){
_Node *tp=&dfs.top();
if(tp->cnt==tp->gpf){
if(tp->x*primes[tp->gpf]*primes[tp->gpf]<=n){
dfs.push({tp->x*primes[tp->gpf],tp->gpf,tp->c+1,tp->cnt,tp->fx,0});
}
tp->ret+=tp->fx*f(primes[tp->gpf],tp->c+1);
tp->fx*=f(primes[tp->gpf],tp->c);
tp->cnt++;
}
else{
if(tp->cnt<prisz&&tp->x*primes[tp->cnt]*primes[tp->cnt]<=n){
dfs.push({tp->x*primes[tp->cnt],tp->cnt,1,tp->cnt,tp->fx,0});
tp->cnt++;
}
else{
if(tp->gpf==-1){
if(sz-tp->x<sqrtN)return tp->ret+tp->fx*table[n/tp->x-1]+1;
else return tp->ret+tp->fx*table[sz-tp->x]+1;
}
T nret=tp->ret;
if(sz-tp->x<sqrtN)nret+=tp->fx*(table[n/tp->x-1]-table[primes[tp->gpf]-1]);
else nret+=tp->fx*(table[sz-tp->x]-table[primes[tp->gpf]-1]);
dfs.pop();
if(dfs.empty())return nret+1;
dfs.top().ret+=nret;
}
}
}
}
std::vector<T> min25_sieve(std::vector<T> &table, auto f) {
std::vector<T> dp = table;
for (auto it = primes.rbegin(); it != primes.rend(); it++) {
int64_t x = *it;
for (int32_t i = sz - 1; i >= sqrtN; i--) {
if (n < x * x * (sz - i)) break;
int64_t xp = x;
int32_t c = 1;
while (xp * x * (sz - i) <= n) {
if (sz - (sz - i) * xp < sqrtN) {
dp[i] += f(x, c) * (dp[n / (xp * (sz - i)) - 1] -
table[x - 1]) +
f(x, c + 1);
} else {
dp[i] +=
f(x, c) * (dp[sz - (sz - i) * xp] - table[x - 1]) +
f(x, c + 1);
}
c++;
xp *= x;
}
}
for (int32_t i = sqrtN - 1; i >= 0; i--) {
if (i + 1 < x * x) break;
int64_t xp = x;
int32_t c = 1;
while (xp * x <= i + 1) {
dp[i] += f(x, c) * (dp[(i + 1) / xp - 1] - table[x - 1]) +
f(x, c + 1);
c++;
xp *= x;
}
}
}
for (int32_t i = 0; i < sz; i++) {
dp[i] += 1;
}
return dp;
}
};