Halc's Library

This documentation is automatically generated by online-judge-tools/verification-helper


Project maintained by halc-git Hosted on GitHub Pages — Theme by mattgraham

:heavy_check_mark: Math/MFPrefixSum.hpp

Depends on

Verified with

Code

#pragma once
#include <math.h>

#include <cstdint>
#include <vector>
#include <stack>

#include "EnumeratePrimes.hpp"
template <class T>
struct MFPrefixSum {
    int64_t n;
    int64_t sqrtN;
    std::vector<int32_t> primes;
    int32_t sz;
    int32_t prisz;
    MFPrefixSum(uint64_t N) {
        n = N;
        sqrtN = sqrt(n);
        sz = sqrtN * 2;
        if (n / sqrtN == sqrtN) sz--;
        while ((sqrtN + 1) * (sqrtN + 1) <= n) sqrtN++;
        while (sqrtN * sqrtN > n) sqrtN--;
        primes = enumerate_primes(sqrtN);
        prisz = primes.size();
    }
    std::vector<T> pi_table() {
        std::vector<T> dp(sz);
        for (int32_t i = 0; i < sqrtN; i++) {
            dp[i] = i;
        }
        for (int32_t i = sqrtN; i < sz; i++) {
            dp[i] = n / (sz - i) - 1;
        }
        for (int64_t x : primes) {
            for (int32_t i = sz - 1; i >= sqrtN; i--) {
                if (n < x * x * (sz - i)) break;
                if (sz - (sz - i) * x < sqrtN) {
                    dp[i] -= (dp[n / (x * (sz - i)) - 1] - dp[x - 2]);
                } else {
                    dp[i] -= (dp[sz - (sz - i) * x] - dp[x - 2]);
                }
            }
            for (int32_t i = sqrtN - 1; i >= 0; i--) {
                if (i + 1 < x * x) break;
                dp[i] -= (dp[(i + 1) / x - 1] - dp[x - 2]);
            }
        }
        return dp;
    }
    std::vector<T> prime_sum_table() {
        std::vector<T> dp(sz);
        for (int32_t i = 0; i < sqrtN; i++) {
            dp[i] = T(i + 1) * T(i + 2) / 2 - 1;
        }
        for (int32_t i = sqrtN; i < sz; i++) {
            dp[i] = T(n / (sz - i)) * T(n / (sz - i) + 1) / 2 - 1;
        }
        for (int64_t x : primes) {
            for (int32_t i = sz - 1; i >= sqrtN; i--) {
                if (n < x * x * (sz - i)) break;
                if (sz - (sz - i) * x < sqrtN) {
                    dp[i] -= (dp[n / (x * (sz - i)) - 1] - dp[x - 2]) * x;
                } else {
                    dp[i] -= (dp[sz - (sz - i) * x] - dp[x - 2]) * x;
                }
            }
            for (int32_t i = sqrtN - 1; i >= 0; i--) {
                if (i + 1 < x * x) break;
                dp[i] -= (dp[(i + 1) / x - 1] - dp[x - 2]) * x;
            }
        }
        return dp;
    }
    std::vector<T> prefix_prime_table(auto f) {
        std::vector<T> dp(sz);
        for (int32_t i = 0; i < sqrtN; i++) {
            dp[i] = f(i + 1);
        }
        for (int32_t i = sqrtN; i < sz; i++) {
            dp[i] = f(n / (sz - i));
        }
        for (int64_t x : primes) {
            for (int32_t i = sz - 1; i >= sqrtN; i--) {
                if (n < x * x * (sz - i)) break;
                if (sz - (sz - i) * x < sqrtN) {
                    dp[i] -= (dp[n / (x * (sz - i)) - 1] - dp[x - 2]) *
                             (f(x) - f(x - 1));
                } else {
                    dp[i] -=
                        (dp[sz - (sz - i) * x] - dp[x - 2]) * (f(x) - f(x - 1));
                }
            }
            for (int32_t i = sqrtN - 1; i >= 0; i--) {
                if (i + 1 < x * x) break;
                dp[i] -= (dp[(i + 1) / x - 1] - dp[x - 2]) * (f(x) - f(x - 1));
            }
        }
        return dp;
    }
    struct _Node{
        int64_t x;
        int32_t gpf;
        int32_t c;
        int32_t cnt;
        T fx;
        T ret;
    };
    T black_algorithm(std::vector<T> &table, auto f) {
        //x,gpf(x),c,f(x),cnt,ret
        if(n==1)return 1;
        std::stack<_Node> dfs;
        dfs.push({1,-1,0,0,1,0});
        while(true){
            _Node *tp=&dfs.top();
            if(tp->cnt==tp->gpf){
                if(tp->x*primes[tp->gpf]*primes[tp->gpf]<=n){
                    dfs.push({tp->x*primes[tp->gpf],tp->gpf,tp->c+1,tp->cnt,tp->fx,0});
                }
                tp->ret+=tp->fx*f(primes[tp->gpf],tp->c+1);
                tp->fx*=f(primes[tp->gpf],tp->c);
                tp->cnt++;
            }
            else{
                if(tp->cnt<prisz&&tp->x*primes[tp->cnt]*primes[tp->cnt]<=n){
                    dfs.push({tp->x*primes[tp->cnt],tp->cnt,1,tp->cnt,tp->fx,0});
                    tp->cnt++;
                }
                else{
                    if(tp->gpf==-1){
                        if(sz-tp->x<sqrtN)return tp->ret+tp->fx*table[n/tp->x-1]+1;
                        else return tp->ret+tp->fx*table[sz-tp->x]+1;
                    }
                    T nret=tp->ret;
                    if(sz-tp->x<sqrtN)nret+=tp->fx*(table[n/tp->x-1]-table[primes[tp->gpf]-1]);
                    else nret+=tp->fx*(table[sz-tp->x]-table[primes[tp->gpf]-1]);
                    dfs.pop();
                    if(dfs.empty())return nret+1;
                    dfs.top().ret+=nret;
                }
            }
        }
    }
    std::vector<T> min25_sieve(std::vector<T> &table, auto f) {
        std::vector<T> dp = table;
        for (auto it = primes.rbegin(); it != primes.rend(); it++) {
            int64_t x = *it;
            for (int32_t i = sz - 1; i >= sqrtN; i--) {
                if (n < x * x * (sz - i)) break;
                int64_t xp = x;
                int32_t c = 1;
                while (xp * x * (sz - i) <= n) {
                    if (sz - (sz - i) * xp < sqrtN) {
                        dp[i] += f(x, c) * (dp[n / (xp * (sz - i)) - 1] -
                                            table[x - 1]) +
                                 f(x, c + 1);
                    } else {
                        dp[i] +=
                            f(x, c) * (dp[sz - (sz - i) * xp] - table[x - 1]) +
                            f(x, c + 1);
                    }
                    c++;
                    xp *= x;
                }
            }
            for (int32_t i = sqrtN - 1; i >= 0; i--) {
                if (i + 1 < x * x) break;
                int64_t xp = x;
                int32_t c = 1;
                while (xp * x <= i + 1) {
                    dp[i] += f(x, c) * (dp[(i + 1) / xp - 1] - table[x - 1]) +
                             f(x, c + 1);
                    c++;
                    xp *= x;
                }
            }
        }
        for (int32_t i = 0; i < sz; i++) {
            dp[i] += 1;
        }
        return dp;
    }
};
#line 2 "Math/MFPrefixSum.hpp"
#include <math.h>

#include <cstdint>
#include <vector>
#include <stack>

#line 4 "Math/EnumeratePrimes.hpp"
std::vector<int32_t> enumerate_primes(int32_t n) {
    std::vector<bool> flg((n + 1) >> 1, true);
    std::vector<int32_t> ret = {2};
    for (int32_t i = 3; i <= n; i += 2) {
        if (!flg[i >> 1]) continue;
        ret.emplace_back(i);
        if (i * i > n) {
            for (int32_t j = i + 2; j <= n; j += 2) {
                if (flg[j >> 1]) ret.emplace_back(j);
            }
            break;
        }
        for (int32_t j = i * i; j <= n; j += i << 1) {
            flg[j >> 1] = false;
        }
    }
    while (!ret.empty() && ret.back() > n) ret.pop_back();
    return ret;
}
#line 9 "Math/MFPrefixSum.hpp"
template <class T>
struct MFPrefixSum {
    int64_t n;
    int64_t sqrtN;
    std::vector<int32_t> primes;
    int32_t sz;
    int32_t prisz;
    MFPrefixSum(uint64_t N) {
        n = N;
        sqrtN = sqrt(n);
        sz = sqrtN * 2;
        if (n / sqrtN == sqrtN) sz--;
        while ((sqrtN + 1) * (sqrtN + 1) <= n) sqrtN++;
        while (sqrtN * sqrtN > n) sqrtN--;
        primes = enumerate_primes(sqrtN);
        prisz = primes.size();
    }
    std::vector<T> pi_table() {
        std::vector<T> dp(sz);
        for (int32_t i = 0; i < sqrtN; i++) {
            dp[i] = i;
        }
        for (int32_t i = sqrtN; i < sz; i++) {
            dp[i] = n / (sz - i) - 1;
        }
        for (int64_t x : primes) {
            for (int32_t i = sz - 1; i >= sqrtN; i--) {
                if (n < x * x * (sz - i)) break;
                if (sz - (sz - i) * x < sqrtN) {
                    dp[i] -= (dp[n / (x * (sz - i)) - 1] - dp[x - 2]);
                } else {
                    dp[i] -= (dp[sz - (sz - i) * x] - dp[x - 2]);
                }
            }
            for (int32_t i = sqrtN - 1; i >= 0; i--) {
                if (i + 1 < x * x) break;
                dp[i] -= (dp[(i + 1) / x - 1] - dp[x - 2]);
            }
        }
        return dp;
    }
    std::vector<T> prime_sum_table() {
        std::vector<T> dp(sz);
        for (int32_t i = 0; i < sqrtN; i++) {
            dp[i] = T(i + 1) * T(i + 2) / 2 - 1;
        }
        for (int32_t i = sqrtN; i < sz; i++) {
            dp[i] = T(n / (sz - i)) * T(n / (sz - i) + 1) / 2 - 1;
        }
        for (int64_t x : primes) {
            for (int32_t i = sz - 1; i >= sqrtN; i--) {
                if (n < x * x * (sz - i)) break;
                if (sz - (sz - i) * x < sqrtN) {
                    dp[i] -= (dp[n / (x * (sz - i)) - 1] - dp[x - 2]) * x;
                } else {
                    dp[i] -= (dp[sz - (sz - i) * x] - dp[x - 2]) * x;
                }
            }
            for (int32_t i = sqrtN - 1; i >= 0; i--) {
                if (i + 1 < x * x) break;
                dp[i] -= (dp[(i + 1) / x - 1] - dp[x - 2]) * x;
            }
        }
        return dp;
    }
    std::vector<T> prefix_prime_table(auto f) {
        std::vector<T> dp(sz);
        for (int32_t i = 0; i < sqrtN; i++) {
            dp[i] = f(i + 1);
        }
        for (int32_t i = sqrtN; i < sz; i++) {
            dp[i] = f(n / (sz - i));
        }
        for (int64_t x : primes) {
            for (int32_t i = sz - 1; i >= sqrtN; i--) {
                if (n < x * x * (sz - i)) break;
                if (sz - (sz - i) * x < sqrtN) {
                    dp[i] -= (dp[n / (x * (sz - i)) - 1] - dp[x - 2]) *
                             (f(x) - f(x - 1));
                } else {
                    dp[i] -=
                        (dp[sz - (sz - i) * x] - dp[x - 2]) * (f(x) - f(x - 1));
                }
            }
            for (int32_t i = sqrtN - 1; i >= 0; i--) {
                if (i + 1 < x * x) break;
                dp[i] -= (dp[(i + 1) / x - 1] - dp[x - 2]) * (f(x) - f(x - 1));
            }
        }
        return dp;
    }
    struct _Node{
        int64_t x;
        int32_t gpf;
        int32_t c;
        int32_t cnt;
        T fx;
        T ret;
    };
    T black_algorithm(std::vector<T> &table, auto f) {
        //x,gpf(x),c,f(x),cnt,ret
        if(n==1)return 1;
        std::stack<_Node> dfs;
        dfs.push({1,-1,0,0,1,0});
        while(true){
            _Node *tp=&dfs.top();
            if(tp->cnt==tp->gpf){
                if(tp->x*primes[tp->gpf]*primes[tp->gpf]<=n){
                    dfs.push({tp->x*primes[tp->gpf],tp->gpf,tp->c+1,tp->cnt,tp->fx,0});
                }
                tp->ret+=tp->fx*f(primes[tp->gpf],tp->c+1);
                tp->fx*=f(primes[tp->gpf],tp->c);
                tp->cnt++;
            }
            else{
                if(tp->cnt<prisz&&tp->x*primes[tp->cnt]*primes[tp->cnt]<=n){
                    dfs.push({tp->x*primes[tp->cnt],tp->cnt,1,tp->cnt,tp->fx,0});
                    tp->cnt++;
                }
                else{
                    if(tp->gpf==-1){
                        if(sz-tp->x<sqrtN)return tp->ret+tp->fx*table[n/tp->x-1]+1;
                        else return tp->ret+tp->fx*table[sz-tp->x]+1;
                    }
                    T nret=tp->ret;
                    if(sz-tp->x<sqrtN)nret+=tp->fx*(table[n/tp->x-1]-table[primes[tp->gpf]-1]);
                    else nret+=tp->fx*(table[sz-tp->x]-table[primes[tp->gpf]-1]);
                    dfs.pop();
                    if(dfs.empty())return nret+1;
                    dfs.top().ret+=nret;
                }
            }
        }
    }
    std::vector<T> min25_sieve(std::vector<T> &table, auto f) {
        std::vector<T> dp = table;
        for (auto it = primes.rbegin(); it != primes.rend(); it++) {
            int64_t x = *it;
            for (int32_t i = sz - 1; i >= sqrtN; i--) {
                if (n < x * x * (sz - i)) break;
                int64_t xp = x;
                int32_t c = 1;
                while (xp * x * (sz - i) <= n) {
                    if (sz - (sz - i) * xp < sqrtN) {
                        dp[i] += f(x, c) * (dp[n / (xp * (sz - i)) - 1] -
                                            table[x - 1]) +
                                 f(x, c + 1);
                    } else {
                        dp[i] +=
                            f(x, c) * (dp[sz - (sz - i) * xp] - table[x - 1]) +
                            f(x, c + 1);
                    }
                    c++;
                    xp *= x;
                }
            }
            for (int32_t i = sqrtN - 1; i >= 0; i--) {
                if (i + 1 < x * x) break;
                int64_t xp = x;
                int32_t c = 1;
                while (xp * x <= i + 1) {
                    dp[i] += f(x, c) * (dp[(i + 1) / xp - 1] - table[x - 1]) +
                             f(x, c + 1);
                    c++;
                    xp *= x;
                }
            }
        }
        for (int32_t i = 0; i < sz; i++) {
            dp[i] += 1;
        }
        return dp;
    }
};
Back to top page