This documentation is automatically generated by online-judge-tools/verification-helper
#include "Tree/StaticTopTree.hpp"
struct M{
using path;
using point;
static path vertex(int v) {}
static path compress(path p, path c) {}
static path add_vertex(point t, int v) {}
static point rake(point x, point y) {}
static point add_edge(path t) {}
};
point
: Point Clusterに載せるデータの型です。path
: Path Clusterに載せるデータの型です。path vertex(int v)
: 頂点 v
のみのPath Clusterを作成する関数です。path compress(path p,path c)
: Path Cluster p
と c
をマージする関数です。p
が根に近い方です。point add_vertex(point t,int v)
: Point Cluster t
に頂点 v
を追加したPath Clusterを返す関数です。point rake(point x,point y)
: Point Cluster x
と y
をマージする関数です。point add_edge(path t)
: Path Cluster t
に辺を追加してPoint Clusterにする関数です。#pragma once
#include <cassert>
#include <cstdint>
#include <vector>
#include "../Graph/Graph.hpp"
template <class M>
struct StaticTopTree {
using point = typename M::point;
using path = typename M::path;
struct Node {
bool is_path;
point point_val;
path path_val;
int32_t pos;
int32_t left;
int32_t right;
int32_t parent;
Node(bool pat, int32_t po = -1, int32_t lf = -1, int32_t ri = -1) {
is_path = pat;
pos = po;
left = lf;
right = ri;
parent = -1;
}
};
int32_t sz;
std::vector<int32_t> node_pos;
std::vector<Node> nodes;
int32_t rt;
template <class T>
StaticTopTree(Graph<T> gr, int32_t root) {
sz = gr.size();
node_pos.resize(sz);
_build(root, gr);
}
template <class T>
int32_t _path_cluster(int32_t pos, std::vector<int32_t> &tree_sz,
Graph<T> &tree) {
if (tree[pos].empty()) {
node_pos[pos] = nodes.size();
nodes.emplace_back(Node(1, pos));
_calc_val(nodes.size() - 1);
return nodes.size() - 1;
}
std::vector<int32_t> address;
std::vector<int32_t> sizes;
while (!tree[pos].empty()) {
int32_t max_size = -1;
int32_t next_pos = -1;
for (int i = 0; i < tree[pos].size(); i++) {
if (tree_sz[tree[pos][i]] > max_size) {
max_size = tree_sz[tree[pos][i]];
next_pos = i;
}
}
std::swap(tree[pos][next_pos], tree[pos].back());
next_pos = tree[pos].back();
tree[pos].pop_back();
tree_sz[pos] -= tree_sz[next_pos];
sizes.emplace_back(tree_sz[pos]);
address.emplace_back(_point_cluster(pos, tree_sz, tree));
pos = next_pos;
}
address.emplace_back(_point_cluster(pos, tree_sz, tree));
sizes.emplace_back(tree_sz[pos]);
return _merge(address, sizes, 0, address.size(), 1);
}
template <class T>
int32_t _point_cluster(int32_t pos, std::vector<int32_t> &tree_sz,
Graph<T> &tree) {
if (tree[pos].empty()) {
node_pos[pos] = nodes.size();
nodes.emplace_back(Node(1, pos));
_calc_val(nodes.size() - 1);
return nodes.size() - 1;
}
std::vector<int32_t> address;
std::vector<int32_t> sizes;
for (int32_t i : tree[pos]) {
sizes.emplace_back(tree_sz[i]);
int32_t vert = _path_cluster(i, tree_sz, tree);
nodes.emplace_back(Node(0, -1, vert));
nodes[vert].parent = nodes.size() - 1;
address.emplace_back(nodes.size() - 1);
_calc_val(nodes.size() - 1);
}
int32_t vert = _merge(address, sizes, 0, address.size(), 0);
node_pos[pos] = nodes.size();
nodes.emplace_back(Node(1, pos, vert));
nodes[vert].parent = nodes.size() - 1;
_calc_val(nodes.size() - 1);
return nodes.size() - 1;
}
int32_t _merge(std::vector<int32_t> &address, std::vector<int32_t> &sizes,
int32_t lf, int32_t ri, bool pat) {
if (lf + 1 == ri) return address[lf];
int32_t add = 0;
for (int32_t i = lf; i < ri; i++) {
add += sizes[i];
}
int32_t now = 0;
int32_t bef = add + 1;
for (int32_t i = lf; i < ri; i++) {
now += sizes[i];
if (now > add - now) {
if (now + now - add > bef) i--;
int32_t left = _merge(address, sizes, lf, i + 1, pat);
int32_t right = _merge(address, sizes, i + 1, ri, pat);
nodes.emplace_back(Node(pat, -1, left, right));
nodes[left].parent = nodes.size() - 1;
nodes[right].parent = nodes.size() - 1;
_calc_val(nodes.size() - 1);
return nodes.size() - 1;
}
bef = add - now - now;
}
assert(false);
}
void _calc_val(int32_t pos) {
if (nodes[pos].is_path) {
if ((nodes[pos].left == -1) && (nodes[pos].right == -1)) {
nodes[pos].path_val = M::vertex(nodes[pos].pos);
} else if ((nodes[pos].left != -1) && (nodes[pos].right != -1)) {
nodes[pos].path_val =
M::compress(nodes[nodes[pos].left].path_val,
nodes[nodes[pos].right].path_val);
} else {
nodes[pos].path_val = M::add_vertex(
nodes[nodes[pos].left].point_val, nodes[pos].pos);
}
} else {
if ((nodes[pos].left != -1) && (nodes[pos].right != -1)) {
nodes[pos].point_val =
M::rake(nodes[nodes[pos].left].point_val,
nodes[nodes[pos].right].point_val);
} else {
nodes[pos].point_val =
M::add_edge(nodes[nodes[pos].left].path_val);
}
}
}
template <class T>
void _build(int32_t root, Graph<T> &tree) {
std::vector<int32_t> vert(sz);
std::vector<int32_t> tree_sz(sz, -1);
vert[0] = root;
tree_sz[root] = 0;
int32_t cnt = 1;
for (int32_t i = 0; i < sz; i++) {
for (int32_t j : tree[vert[i]]) {
if (tree_sz[j]) {
tree_sz[j] = 0;
vert[cnt] = j;
cnt++;
}
}
}
for (int32_t i = sz - 1; i >= 0; i--) {
int32_t parent = 0;
for (int32_t j : tree[vert[i]]) {
if (tree_sz[j] == 0) {
parent = -parent - 1;
}
if (parent >= 0) parent++;
tree_sz[vert[i]] += tree_sz[j];
}
if (parent < 0) {
std::swap(tree[vert[i]][-parent - 1], tree[vert[i]].back());
tree[vert[i]].pop_back();
}
tree_sz[vert[i]]++;
}
rt = _path_cluster(root, tree_sz, tree);
}
path root_value() { return nodes[rt].path_val; }
void calc(int32_t pos) {
int32_t change = node_pos[pos];
while (nodes[change].parent != -1) {
_calc_val(change);
change = nodes[change].parent;
}
_calc_val(change);
}
int32_t size() { return sz; }
};
#line 2 "Tree/StaticTopTree.hpp"
#include <cassert>
#include <cstdint>
#include <vector>
#line 4 "Graph/Graph.hpp"
template <class T = int32_t>
struct Edge {
int32_t from, to;
T cost;
int32_t idx;
Edge() = default;
Edge(int32_t from, int32_t to, T cost = 1, int32_t idx = -1)
: from(from), to(to), cost(cost), idx(idx) {}
operator int32_t() { return to; }
void reverse() { std::swap(from, to); }
};
template <class T = int32_t>
struct Graph {
std::vector<std::vector<Edge<T>>> gr;
int32_t eds = 0;
Graph() = default;
Graph(int32_t n) { gr.resize(n); }
void add_edge(int32_t from, int32_t to, T cost = 1, bool directed = false) {
gr[from].emplace_back(from, to, cost, eds);
if (!directed) {
gr[to].emplace_back(to, from, cost, eds);
}
eds++;
}
void add_directed_edge(int32_t from, int32_t to, T cost = 1) {
gr[from].emplace_back(from, to, cost, eds);
eds++;
}
inline std::vector<Edge<T>> &operator[](const int32_t &p) { return gr[p]; }
int32_t size() { return gr.size(); }
};
template <class T>
Graph<T> reverse_edges(Graph<T> &gr) {
Graph<T> ret(gr.size());
for (int32_t i = 0; i < gr.size(); i++) {
for (Edge<T> j : gr[i]) {
ret[j].emplace_back(j);
ret[j].back().reverse();
}
}
return ret;
}
#line 7 "Tree/StaticTopTree.hpp"
template <class M>
struct StaticTopTree {
using point = typename M::point;
using path = typename M::path;
struct Node {
bool is_path;
point point_val;
path path_val;
int32_t pos;
int32_t left;
int32_t right;
int32_t parent;
Node(bool pat, int32_t po = -1, int32_t lf = -1, int32_t ri = -1) {
is_path = pat;
pos = po;
left = lf;
right = ri;
parent = -1;
}
};
int32_t sz;
std::vector<int32_t> node_pos;
std::vector<Node> nodes;
int32_t rt;
template <class T>
StaticTopTree(Graph<T> gr, int32_t root) {
sz = gr.size();
node_pos.resize(sz);
_build(root, gr);
}
template <class T>
int32_t _path_cluster(int32_t pos, std::vector<int32_t> &tree_sz,
Graph<T> &tree) {
if (tree[pos].empty()) {
node_pos[pos] = nodes.size();
nodes.emplace_back(Node(1, pos));
_calc_val(nodes.size() - 1);
return nodes.size() - 1;
}
std::vector<int32_t> address;
std::vector<int32_t> sizes;
while (!tree[pos].empty()) {
int32_t max_size = -1;
int32_t next_pos = -1;
for (int i = 0; i < tree[pos].size(); i++) {
if (tree_sz[tree[pos][i]] > max_size) {
max_size = tree_sz[tree[pos][i]];
next_pos = i;
}
}
std::swap(tree[pos][next_pos], tree[pos].back());
next_pos = tree[pos].back();
tree[pos].pop_back();
tree_sz[pos] -= tree_sz[next_pos];
sizes.emplace_back(tree_sz[pos]);
address.emplace_back(_point_cluster(pos, tree_sz, tree));
pos = next_pos;
}
address.emplace_back(_point_cluster(pos, tree_sz, tree));
sizes.emplace_back(tree_sz[pos]);
return _merge(address, sizes, 0, address.size(), 1);
}
template <class T>
int32_t _point_cluster(int32_t pos, std::vector<int32_t> &tree_sz,
Graph<T> &tree) {
if (tree[pos].empty()) {
node_pos[pos] = nodes.size();
nodes.emplace_back(Node(1, pos));
_calc_val(nodes.size() - 1);
return nodes.size() - 1;
}
std::vector<int32_t> address;
std::vector<int32_t> sizes;
for (int32_t i : tree[pos]) {
sizes.emplace_back(tree_sz[i]);
int32_t vert = _path_cluster(i, tree_sz, tree);
nodes.emplace_back(Node(0, -1, vert));
nodes[vert].parent = nodes.size() - 1;
address.emplace_back(nodes.size() - 1);
_calc_val(nodes.size() - 1);
}
int32_t vert = _merge(address, sizes, 0, address.size(), 0);
node_pos[pos] = nodes.size();
nodes.emplace_back(Node(1, pos, vert));
nodes[vert].parent = nodes.size() - 1;
_calc_val(nodes.size() - 1);
return nodes.size() - 1;
}
int32_t _merge(std::vector<int32_t> &address, std::vector<int32_t> &sizes,
int32_t lf, int32_t ri, bool pat) {
if (lf + 1 == ri) return address[lf];
int32_t add = 0;
for (int32_t i = lf; i < ri; i++) {
add += sizes[i];
}
int32_t now = 0;
int32_t bef = add + 1;
for (int32_t i = lf; i < ri; i++) {
now += sizes[i];
if (now > add - now) {
if (now + now - add > bef) i--;
int32_t left = _merge(address, sizes, lf, i + 1, pat);
int32_t right = _merge(address, sizes, i + 1, ri, pat);
nodes.emplace_back(Node(pat, -1, left, right));
nodes[left].parent = nodes.size() - 1;
nodes[right].parent = nodes.size() - 1;
_calc_val(nodes.size() - 1);
return nodes.size() - 1;
}
bef = add - now - now;
}
assert(false);
}
void _calc_val(int32_t pos) {
if (nodes[pos].is_path) {
if ((nodes[pos].left == -1) && (nodes[pos].right == -1)) {
nodes[pos].path_val = M::vertex(nodes[pos].pos);
} else if ((nodes[pos].left != -1) && (nodes[pos].right != -1)) {
nodes[pos].path_val =
M::compress(nodes[nodes[pos].left].path_val,
nodes[nodes[pos].right].path_val);
} else {
nodes[pos].path_val = M::add_vertex(
nodes[nodes[pos].left].point_val, nodes[pos].pos);
}
} else {
if ((nodes[pos].left != -1) && (nodes[pos].right != -1)) {
nodes[pos].point_val =
M::rake(nodes[nodes[pos].left].point_val,
nodes[nodes[pos].right].point_val);
} else {
nodes[pos].point_val =
M::add_edge(nodes[nodes[pos].left].path_val);
}
}
}
template <class T>
void _build(int32_t root, Graph<T> &tree) {
std::vector<int32_t> vert(sz);
std::vector<int32_t> tree_sz(sz, -1);
vert[0] = root;
tree_sz[root] = 0;
int32_t cnt = 1;
for (int32_t i = 0; i < sz; i++) {
for (int32_t j : tree[vert[i]]) {
if (tree_sz[j]) {
tree_sz[j] = 0;
vert[cnt] = j;
cnt++;
}
}
}
for (int32_t i = sz - 1; i >= 0; i--) {
int32_t parent = 0;
for (int32_t j : tree[vert[i]]) {
if (tree_sz[j] == 0) {
parent = -parent - 1;
}
if (parent >= 0) parent++;
tree_sz[vert[i]] += tree_sz[j];
}
if (parent < 0) {
std::swap(tree[vert[i]][-parent - 1], tree[vert[i]].back());
tree[vert[i]].pop_back();
}
tree_sz[vert[i]]++;
}
rt = _path_cluster(root, tree_sz, tree);
}
path root_value() { return nodes[rt].path_val; }
void calc(int32_t pos) {
int32_t change = node_pos[pos];
while (nodes[change].parent != -1) {
_calc_val(change);
change = nodes[change].parent;
}
_calc_val(change);
}
int32_t size() { return sz; }
};